Coupled CFD-FEM analysis of the damage causes of the retention bunker: a case study at hard coal mine

Author:

Janoszek Tomasz,Rotkegel Marek

Abstract

AbstractUnderground coal storage bunkers serve as crucial infrastructural components in the coal mining industry, providing secure and accessible locations for the storage of mined coal. The interaction between stored coal and underground water in coal storage bunkers indeed poses significant challenges due to the unpredictable nature of the resulting coal-water mixture. This phenomenon is particularly prevalent in coal mines operating under water hazards, where groundwater infiltration into storage areas can lead to the formation of coal-water mixtures, altering the physical properties of the stored coal. The interaction between coal and water can result in the formation of coal-water mixtures (hydromixture), which exhibit complex rheological properties. These mixtures may vary in viscosity, density, and particle size distribution, making their behavior difficult to predict. Underground water may exert hydrostatic pressure on the stored coal, influencing its mechanical behavior and compaction properties. Changes in pressure can result in coal compaction or expansion, affecting bunker stability and the integrity of surrounding rock strata. The main goal of the paper was to determine the values of pressure field variations exerted by the flowing hydromixture within underground coal storage bunkers. This objective reflects a critical aspect of understanding the dynamic behavior of coal-water mixtures (hydromixture) under varying conditions, particularly in environments where water hazards pose significant challenges to storage and operational stability. The paper utilized computational fluid dynamics (CFD) methods to examine the changes in pressure within underground coal storage bunkers induced by the flow of coal-water mixtures. The examination of damage to an underground coal storage bunker due to stress distribution was conducted using the finite element method (FEM). This computational technique is widely utilized in engineering and structural analysis to model complex systems and predict the behavior of materials under various loading conditions The results of the CFD numerical simulation were compared with the mathematical models.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3