Increasing productivity by using smart gas for optimal management of the gas lift process in a cluster of wells

Author:

Abu-Bakri Jalal,Jafari Arezou,Namdar Hamed,Ahmadi Goodarz

Abstract

AbstractIn the face of the escalating global energy demand, the challenge lies in enhancing the extraction of oil from low-pressure underground reservoirs. The conventional artificial gas lift method is constrained by the limited availability of high-pressure gas for injection, which is essential for reducing hydrostatic bottom hole pressure and facilitating fluid transfer to the surface. This study proposes a novel ‘smart gas’ concept, which involves injecting a gas mixture with an optimized fraction of CO2 and N2 into each well. The research introduces a dual optimization strategy that not only determines the optimal gas composition but also allocates the limited available gas among wells to achieve multiple objectives. An extensive optimization process was conducted to identify the optimal gas injection rate for each well, considering the limited gas supply. The study examined the impact of reducing available gas from 20 to 10 MMSCFD and the implications of water production restrictions on oil recovery. The introduction of smart gas resulted in a 3.1% increase in overall oil production compared to using natural gas. The optimization of smart gas allocation proved effective in mitigating the decline in oil production, with a 25% reduction in gas supply leading to only a 10% decrease in oil output, and a 33% reduction resulting in a 26.8% decrease. The study demonstrates that the smart gas approach can significantly enhance oil production efficiency in low-pressure reservoirs, even with a substantial reduction in gas supply. It also shows that imposing water production limits has a minimal impact on oil production, highlighting the potential of smart gas in achieving environmentally sustainable oil extraction. Furthermore, the implementation of the smart gas approach aligns with global environmental goals by potentially reducing greenhouse gas emissions, thereby contributing to the broader objective of environmental sustainability in the energy sector.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3