Degradation enhancement of rice straw by co-culture of Phanerochaete chrysosporium and Trichoderma viride

Author:

Chen Kai-Jian,Tang Ji-Chao,Xu Bao-Hong,Lan Shi-Le,Cao Yankun

Abstract

AbstractStraw is one of the most abundant stock of renewable biomass from crop production. However, its utilization efficiency is still very low. Although co-cultivation of fungi increases the degrading rate, the co-cultivation condition needs to be optimized. To optimize the co-culture condition of Phanerochaete chrysosporium and Trichoderma viride degrading rice straw, we first tested the antagonistic characteristic between the fungi. The results showed that the best co-culture pattern was to first inoculate P. chrysosporium and culture for 4 days, then inoculate T. viride, and co-culture the two fungi for 4 days. The optimum fermentation condition was 14% (w/v) of inoculum concentration, the equivalent inoculation of the fungi, culture temperature at 30 °C, and 1:1.4 for solid-liquid ratio. Under the optimum condition, the degradation ratios of lignin and cellulose were 26.38% and 33.29%, respectively; the soluble carbon content in the culture product was 23.07% (w/v). The results would provide important reference information for the efficient utilization of rice straw to produce more accessible energy resources, such as ethanol and glucose.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3