Resonant noise amplification in a predator-prey model with quasi-discrete generations

Author:

Giannakou M.,Waclaw B.

Abstract

AbstractPredator-prey models have been shown to exhibit resonance-like behaviour, in which random fluctuations in the number of organisms (demographic noise) are amplified when their frequency is close to the natural oscillatory frequency of the system. This behaviour has been traditionally studied in models with exponentially distributed replication and death times. Here we consider a biologically more realistic model, in which organisms replicate quasi-synchronously such that the distribution of replication times has a narrow maximum at some $$T>0$$ T > 0 corresponding to the mean doubling time. We show that when the frequency of replication $$f=1/T$$ f = 1 / T is tuned to the natural oscillatory frequency of the predator-prey model, the system exhibits oscillations that are much stronger than in the model with Poissonian (non-synchronous) replication and death. These oscillations lead to population instability and the extinction of one of the species much sooner than in the case of Poissonian replication. The effect can be explained by resonant amplification of coloured noise generated by quasi-synchronous replication events.

Funder

Dioscuri

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3