Author:
Eriksson Mimmi,Claesson Per M.,Järn Mikael,Wallqvist Viveca,Tuominen Mikko,Kappl Michael,Teisala Hannu,Vollmer Doris,Schoelkopf Joachim,Gane Patrick A. C.,Mäkelä Jyrki M.,Swerin Agne
Abstract
AbstractThe formation of a bridging gas capillary between superhydrophobic surfaces in water gives rise to strongly attractive interactions ranging up to several micrometers on separation. However, most liquids used in materials research are oil-based or contain surfactants. Superamphiphobic surfaces repel both water and low-surface-tension liquids. To control the interactions between a superamphiphobic surface and a particle, it needs to be resolved whether and how gas capillaries form in non-polar and low-surface-tension liquids. Such insight will aid advanced functional materials development. Here, we combine laser scanning confocal imaging and colloidal probe atomic force microscopy to elucidate the interaction between a superamphiphobic surface and a hydrophobic microparticle in three liquids with different surface tensions: water (73 mN m−1), ethylene glycol (48 mN m−1) and hexadecane (27 mN m−1). We show that bridging gas capillaries are formed in all three liquids. Force-distance curves between the superamphiphobic surface and the particle reveal strong attractive interactions, where the range and magnitude decrease with liquid surface tension. Comparison of free energy calculations based on the capillary menisci shapes and the force measurements suggest that under our dynamic measurements the gas pressure in the capillary is slightly below ambient.
Funder
Stiftelsen för Strategisk Forskning
Karlstad University
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Charlaix, E. & Ciccotti, M. In Handbook of Nanophysics Vol. 1 (ed Sattler, K.) Ch. 12, 1–17 (Taylor&Francis Publisher, CRC Press, 2010).
2. Capozza, R., Barel, I. & Urbakh, M. In Fundamentals of Friction and Wear on the Nanoscale (eds Gnecco, E. & Meyer, E.) Ch. 15, 313–330 (Springer International Publishing Switzerland, 2015).
3. Liu, X., Yun, S. H. & Claesson, P. M. Frictional behaviour of micro-patterned silicon surfaces. J. Colloid Interface Sci. 456, 76–84 (2015).
4. Hansson, P. M. et al. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces. Phys. Chem. Chem. Phys. 15, 17893–17902 (2013).
5. Schellenberger, F. et al. Detaching microparticles from a liquid surface. Phys. Rev. Lett. 121, 048002 (2018).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献