Prediction of hydrophilic and hydrophobic hydration structure of protein by neural network optimized using experimental data

Author:

Sato Kochi,Oide Mao,Nakasako Masayoshi

Abstract

AbstractThe hydration structures of proteins, which are necessary for their folding, stability, and functions, were visualized using X-ray and neutron crystallography and transmission electron microscopy. However, complete visualization of hydration structures over the entire protein surface remains difficult. To compensate for this incompleteness, we developed a three-dimensional convolutional neural network to predict the probability distribution of hydration water molecules on the hydrophilic and hydrophobic surfaces, and in the cavities of proteins. The neural network was optimized using the distribution patterns of protein atoms around the hydration water molecules identified in the high-resolution X-ray crystal structures. We examined the feasibility of the neural network using water sites in the protein crystal structures that were not included in the datasets. The predicted distribution covered most of the experimentally identified hydration sites, with local maxima appearing in their vicinity. This computational approach will help to highlight the relevance of hydration structures to the biological functions and dynamics of proteins.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology, Japan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3