Advanced CKD detection through optimized metaheuristic modeling in healthcare informatics

Author:

Bilal Anas,Alzahrani Abdulkareem,Almuhaimeed Abdullah,Khan Ali Haider,Ahmad Zohaib,Long Haixia

Abstract

AbstractData categorization is a top concern in medical data to predict and detect illnesses; thus, it is applied in modern healthcare informatics. In modern informatics, machine learning and deep learning models have enjoyed great attention for categorizing medical data and improving illness detection. However, the existing techniques, such as features with high dimensionality, computational complexity, and long-term execution duration, raise fundamental problems. This study presents a novel classification model employing metaheuristic methods to maximize efficient positives on Chronic Kidney Disease diagnosis. The medical data is initially massively pre-processed, where the data is purified with various mechanisms, including missing values resolution, data transformation, and the employment of normalization procedures. The focus of such processes is to leverage the handling of the missing values and prepare the data for deep analysis. We adopt the Binary Grey Wolf Optimization method, a reliable subset selection feature using metaheuristics. This operation is aimed at improving illness prediction accuracy. In the classification step, the model adopts the Extreme Learning Machine with hidden nodes through data optimization to predict the presence of CKD. The complete classifier evaluation employs established measures, including recall, specificity, kappa, F-score, and accuracy, in addition to the feature selection. Data related to the study show that the proposed approach records high levels of accuracy, which is better than the existing models.

Funder

Hainan Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3