Estimation of minimum foot clearance using a single foot-mounted inertial sensor and personalized foot geometry scan

Author:

Fehr Katherine HeidiORCID,Bartloff Jennifer Nicole,Wang Yisen,Hetzel Scott,Adamczyk Peter G.ORCID

Abstract

AbstractThe real-world measurement of minimum foot clearance (mFC) during the swing phase of gait is critical in efforts to understand and reduce the risk of trip-and-fall incidents in populations with gait impairments. Past research has focused on measuring clearance of a single point on a person’s foot, typically the toe—however, this may overestimate mFC and may even be the wrong region of the foot in cases of gait impairments or interventions. In this work, we present a novel method to reconstruct the swing-phase trajectory of an arbitrary number of points on a person’s shoe and estimate the instantaneous height and location of whole-foot mFC. This is achieved using a single foot-mounted inertial sensor and personalized shoe geometry scan, assuming a rigid-body IMU-shoe system. This combination allows collection and analysis using out-of-lab tests, potentially including clinical environments. Validation of single marker location using the proposed method vs. motion capture showed height errors with bias less than 0.05 mm, and 95% confidence interval of − 8.18 to + 8.09 mm. The method is demonstrated in an example data set comparing different interventions for foot drop, and it shows clear differences among no intervention, functional electrical stimulation, and ankle–foot orthosis conditions. This method offers researchers and clinicians a rich understanding of a person’s gait by providing objective 3D foot kinematics and allowing a unique opportunity to view the regions of the foot where minimum clearance occurs. This information can contribute to a more informed recommendation of specific interventions or assistive technology than is currently possible in standard clinical practice.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3