Internal stress transfer characteristics of coal–rock medium under concentrated force based on particle flow method

Author:

Wu Yongping,Tang Yepeng,Xie Panshi,Hu Bosheng,Lang Ding,Wang Hongwei

Abstract

AbstractTo solve the problem that the macroscopic deformation and failure of coal–rock medium under external loads are easy to be observed while the internal stress transfer mode and path are unclear. Based on the discrete element idea, the numerical models for pure coal or rock samples and coal–rock combination samples with different lithologies and combination methods under concentrated force are established by PFC2D software. Then the influence of coal or rock strength and combination methods on the internal stress transfer law and distribution evolution characteristics of coal–rock medium are discussed from the perspectives of macroscopic stress and mesoscopic force chain, respectively. The results showed that under concentrated load, the macroscopic stress transfer paths within pure coal or rock samples and coal–rock combination samples are primarily in the form of ‘point source radiation’. However, when transferring between coal–rock interfaces, there is a certain interface effect. For pure coal or rock samples, differences in lithology does not change the transfer rules and macro distribution patterns of internal stress, but it can cause changes in internal unit transfer stress value and local area transfer direction. For coal–rock combination samples, the greater the difference in lithology between the two sides of the interface, the more likely the interface effect will occur. In addition, the internal stress transfer is also influenced by the relative stratigraphic relationships of coal and rock. When the stress is transferred from a higher-strength rock to a lower-strength coal mass, the interface effect will be more significant. However, regardless of the combination pattern, the locations where significant stress surges occur are always within the higher strength rock mass near the interface. The findings are helpful to understand the mechanical properties and failure mechanism of mining coal and rock mass, and provide a theoretical basis for the study of the mining-induced mechanical behavior of the floor under the action of the coal pillar.

Funder

National Natural Science Foundation of China

Major Science and Technology Innovation Projects in Shandong Province

Excellent Youth Foundation of Shaanxi

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3