LncRNA SNHG8 regulates the migration and angiogenesis of pHUVECs induced by high glucose via the TRPM7/ERK1/2 signaling axis

Author:

Fan Zongcheng,Chen Xin,Wang Laicheng,Yu Jianjian,Zhang Shunpeng,Xu Changsheng,Lin Jinxiu,Lin Yunchai,Peng Feng

Abstract

AbstractThis study aimed to evaluate the regulatory effect and molecular mechanism of long noncoding RNA small nucleolus RNA host gene 8 (LncRNA SNHG8) in the migration and angiogenesis of primary human umbilical vein endothelial cells (pHUVECs) under high-glucose (HG) conditions. The HG-induced endothelial injury model was established in vitro.The cell model of silencing SNHG8, overexpressing SNHG8, and silencing TRPM7 was established by transfecting SNHG8-siRNA, SNHG8 plasmid and TRPM7-siRNA into cells with liposomes.The SNHG8 level was determined through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression levels of transient receptor potential melastatin 7 (TRPM7), endothelial nitric oxide synthase (eNOS), p-eNOS, extracellular signal-regulated kinase 1/2(ERK1/2), and p-ERK1/2 were assessed through western blot. Nitric oxide (NO) levels were measured with DAF-FM. pHUVEC migration was examined through wound healing and Transwell assay, and pHUVEC angiogenesis was observed through a tube formation assay. Results showed that HG promoted the expression of lncRNA SNHG8 and TRPM7 and decreased the ratio of p-eNOS/eNOS and p-ERK1/2/ERK1/2 in pHUVECs . NO production, migration , and angiogenesis were inhibited in pHUVECs under HG conditions. Silencing lncRNA SNHG8 and TRPM7 could significantly reverse the HG-induced decrease in eNOS activation, NO production , migration, and angiogenesis . SNHG8 and U0126 (ERK pathway inhibitor) overexpression enhanced the HG effects, whereas using U0126 did not affect the TRPM7 expression. In conclusion, lncRNA SNHG8 participates in HG-induced endothelial cell injury and likely regulates NO production, migration, and angiogenesis of pHUVECs via the TRPM7/ERK1/2 signaling axis.

Funder

Scientific Research Project of Hefei Third People's Hospital

Fujian provincial health technology project

The scientific research personnel training project for the Fujian Provincial Health Commission

Natural Science Fundation of Fujian Province

Joint Funds for the Innovation of Science and Technology,Fujian Province

National Natural Science Foundation of China

Foreign Cooperation Project of Science and Technology, Fujian Province

Joint Funds for the innovation of science and Technology,Fujian province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3