Personalizing driver safety interfaces via driver cognitive factors inference

Author:

Sumner Emily S.ORCID,DeCastro Jonathan,Costa Jean,Gopinath Deepak E.,Kimani Everlyne,Hakimi Shabnam,Morgan Allison,Best Andrew,Nguyen Hieu,Brooks Daniel J.,ul Haq Bassam,Patrikalakis Andrew,Yasuda Hiroshi,Sieck Kate,Balachandran Avinash,Chen Tiffany L.,Rosman Guy

Abstract

AbstractRecent advances in AI and intelligent vehicle technology hold the promise of revolutionizing mobility and transportation through advanced driver assistance systems (ADAS). Certain cognitive factors, such as impulsivity and inhibitory control have been shown to relate to risky driving behavior and on-road risk-taking. However, existing systems fail to leverage such factors in assistive driving technologies adequately. Varying the levels of these cognitive factors could influence the effectiveness and acceptance of ADAS interfaces. We demonstrate an approach for personalizing driver interaction via driver safety interfaces that are are triggered based on the inference of the driver’s latent cognitive states from their driving behavior. To accomplish this, we adopt a data-driven approach and train a recurrent neural network to infer impulsivity and inhibitory control from recent driving behavior. The network is trained on a population of human drivers to infer impulsivity and inhibitory control from recent driving behavior. Using data collected from a high-fidelity vehicle motion simulator experiment, we demonstrate the ability to deduce these factors from driver behavior. We then use these inferred factors to determine instantly whether or not to engage a driver safety interface. This approach was evaluated using leave-one-out cross validation using actual human data. Our evaluations reveal that our personalized driver safety interface that captures the cognitive profile of the driver is more effective in influencing driver behavior in yellow light zones by reducing their inclination to run through them.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3