Controlled release herbicide formulation for effective weed control efficacy

Author:

Paul Santosh Kumar,Xi Yunfei,Sanderson Peter,Naidu Ravi

Abstract

AbstractControlled release formulation (CRF) of herbicide is an effective weed management technique with less eco-toxicity than other available commercial formulations. To maximise the effectiveness of CRFs however, it is crucial to understand the herbicide-releasing behaviour at play, which predominately depends on the interaction mechanisms between active ingredients and carrier materials during adsorption. In this study, we investigated and modelled the adsorption characteristics of model herbicide 2,4-D onto two organo-montmorillonites (octadecylamine- and aminopropyltriethoxysilane-modified) to synthesise polymer-based CRFs. Herbicide-releasing behaviour of the synthesised CRF microbeads was then analysed under various experimental conditions, and weed control efficacy determined under glasshouse conditions. Results revealed that adsorption of 2,4-D onto both organo-montmorillonites follows the pseudo-second-order kinetics model and is predominately controlled by the chemisorption process. However, multi-step mechanisms were detected in the adsorption on both organoclays, hence intra-particle diffusion is not the sole rate-limiting step for the adsorption process. Both organoclays followed the Elovich model, suggesting they have energetically heterogeneous surfaces. Herbicide-releasing behaviours of synthesised beads were investigated at various pH temperatures and ionic strengths under laboratory and glasshouse conditions. Furthermore, weed control efficacy of synthesised beads were investigated using pot studies under glasshouse condition. Desorption studies revealed that both synthesised microbeads have slow releasing behaviour at a wide range of pHs (5–9), temperatures (25–45 °C), and ionic strengths. The results also revealed that synthesised microbeads have excellent weed control efficacy on different broad-leaf weed species under glasshouse conditions.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3