Novel method of building train and test sets for evaluation of machine learning models related to software bugs assignment

Author:

Chmielowski Lukasz,Kucharzak Michal,Burduk Robert

Abstract

AbstractNowadays many tools are in use in processes related to handling bug reports, feature requests, supporting questions or similar related issues which should be handled during software development or maintenance. Part of them use machine learning techniques. In introduction is presented a review of fundamental methods used for evaluation of machine learning models. This paper points out weak points of currently used metrics for evaluation in specific context of the cases related to software development especially bug reports. The disadvantages of state of the art are related to disregarding time dependencies which are important to be applied for creating train and test sets as they may have impact on results. Extensive research of the art has been conducted and has not been found any article with the use of time dependencies for evaluation of machine learning models in the context of works related to software development applications like machine learning solutions to supporting bug tracking systems. This paper introduces a novel solution which is devoid of these drawbacks. Experimental research showed the effectiveness of the introduced method and significantly different results obtained compared to the state-of-the-art methods.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3