Compartmentalization of the proteasome-interacting proteins during sperm capacitation

Author:

Zigo MichalORCID,Manaskova-Postlerova Pavla,Jonakova Vera,Kerns KarlORCID,Sutovsky Peter

Abstract

AbstractUbiquitination is a stable, reversible posttranslational modification of target proteins by covalent ligation of the small chaperone protein ubiquitin. Most commonly ubiquitination targets proteins for degradation/recycling by the 26S proteasome in a well-characterized enzymatic cascade. Studies using human and non-human mammalian spermatozoa revealed the role of the ubiquitin-proteasome system (UPS) in the regulation of fertilization, including sperm-zona pellucida (ZP) interactions as well as the early events of sperm capacitation, the remodeling of the sperm plasma membrane and acrosome, and for the acquisition of sperm fertilizing ability. The present study investigated the activity of UPS during in vitro capacitation of fresh boar spermatozoa in relation to changes in sperm proteome. Parallel and sequential treatments of ejaculated and capacitated spermatozoa under proteasome permissive/inhibiting conditions were used to isolate putative sperm proteasome-associated sperm proteins in a compartment-specific manner. A differential proteomic approach employing 1D PAGE revealed differences in accumulated proteins at the molecular weights of 60, 58, 49, and 35 kDa, and MS analysis revealed the accumulation of proteins previously reported as proteasome co-purifying proteins, as well as some novel proteins. Among others, P47/lactadherin, ACRBP, ADAM5, and SPINK2 (alias SAAI) were processed by the proteasome in a capacitation dependent manner. Furthermore, the capacitation-induced reorganization of the outer acrosomal membrane was slowed down in the presence of proteasomal inhibitors. These novel results support the proposed role of UPS in sperm capacitation and open several new lines of inquiry into sperm capacitation mechanism.

Publisher

Springer Science and Business Media LLC

Reference66 articles.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3