Targeting fibrotic signaling pathways by EGCG as a therapeutic strategy for uterine fibroids

Author:

Islam Md Soriful,Parish Maclaine,Brennan Joshua T.,Winer Briana L.,Segars James H.

Abstract

AbstractFibrosis is characterized by excessive accumulation of extracellular matrix, which is a key feature of uterine fibroids. Our prior research supports the tenet that inhibition of fibrotic processes may restrict fibroid growth. Epigallocatechin gallate (EGCG), a green tea compound with powerful antioxidant properties, is an investigational drug for uterine fibroids. An early phase clinical trial showed that EGCG was effective in reducing fibroid size and its associated symptoms; however, its mechanism of action(s) has not been completely elucidated. Here, we probed effects of EGCG on key signaling pathways involved in fibroid cell fibrosis. Viability of myometrial and fibroid cells was not greatly affected by EGCG treatment (1–200 µM). Cyclin D1, a protein involved in cell cycle progression, was increased in fibroid cells and was significantly reduced by EGCG. EGCG treatment significantly reduced mRNA or protein levels of key fibrotic proteins, including fibronectin (FN1), collagen (COL1A1), plasminogen activator inhibitor-1 (PAI-1), connective tissue growth factor (CTGF), and actin alpha 2, smooth muscle (ACTA2) in fibroid cells, suggesting antifibrotic effects. EGCG treatment altered the activation of YAP, β-catenin, JNK and AKT, but not Smad 2/3 signaling pathways involved in mediating fibrotic process. Finally, we conducted a comparative study to evaluate the ability of EGCG to regulate fibrosis with synthetic inhibitors. We observed that EGCG displayed greater efficacy than ICG-001 (β-catenin), SP600125 (JNK) and MK-2206 (AKT) inhibitors, and its effects were equivalent to verteporfin (YAP) or SB525334 (Smad) for regulating expression of key fibrotic mediators. These data indicate that EGCG exhibits anti-fibrotic effects in fibroid cells. These results provide insight into mechanisms behind the observed clinical efficacy of EGCG against uterine fibroids.

Funder

National Institutes of Health

Howard W. and Georgeanna Seegar Jones Endowment

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3