Author:
Coluccelli Nicola,Galzerano Gianluca,Laporta Paolo,Curtis Kelly,Lonsdale Claire L.,Padgen Debbie,Howle Christopher R.,Cerullo Giulio
Abstract
AbstractVibrational spectroscopies offer great potential for standoff detection of chemical and biological warfare agents, avoiding contamination to the operator and equipment. Among them, particularly promising is Coherent anti-Stokes Raman scattering (CARS) spectroscopy, using synchronized pump/Stokes laser pulses to set up a vibrational coherence of target molecules at a laser focus, which is read by further interaction with a probe pulse, resulting in the emission of a coherent beam detectable at a distance. CARS has previously demonstrated the capability to detect bacterial spores based on the Raman spectrum of the characteristic molecule calcium dipicolinate (CaDPA); however, a complex and bulky laser technology, which is only suitable for a laboratory environment, was employed. Here we develop a broadband CARS setup based on a compact, industrial grade ytterbium laser system. We demonstrate high signal-to-noise ratio detection ofBacillus atrophaeusspores at a concentration of 105cfu/mm2, at a standoff distance of 1 m, and an acquisition time of 1 s. Our system, which combines chemical specificity and sensitivity along with improved ruggedness and portability, paves the way to a new generation of instruments for real-world standoff detection of chemical and biological threats.
Funder
Defence Science and Technology Laboratory
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献