Author:
Afshar Mohammad E.,Abraha Haben Y.,Bakooshli Mohsen A.,Davoudi Sadegh,Thavandiran Nimalan,Tung Kayee,Ahn Henry,Ginsberg Howard J.,Zandstra Peter W.,Gilbert Penney M.
Abstract
AbstractThree-dimensional (3D) in vitro models of human skeletal muscle mimic aspects of native tissue structure and function, thereby providing a promising system for disease modeling, drug discovery or pre-clinical validation, and toxicity testing. Widespread adoption of this research approach is hindered by the lack of easy-to-use platforms that are simple to fabricate and that yield arrays of human skeletal muscle micro-tissues (hMMTs) in culture with reproducible physiological responses that can be assayed non-invasively. Here, we describe a design and methods to generate a reusable mold to fabricate a 96-well platform, referred to as MyoTACTIC, that enables bulk production of 3D hMMTs. All 96-wells and all well features are cast in a single step from the reusable mold. Non-invasive calcium transient and contractile force measurements are performed on hMMTs directly in MyoTACTIC, and unbiased force analysis occurs by a custom automated algorithm, allowing for longitudinal studies of function. Characterizations of MyoTACTIC and resulting hMMTs confirms the capability of the device to support formation of hMMTs that recapitulate biological responses. We show that hMMT contractile force mirrors expected responses to compounds shown by others to decrease (dexamethasone, cerivastatin) or increase (IGF-1) skeletal muscle strength. Since MyoTACTIC supports hMMT long-term culture, we evaluated direct influences of pancreatic cancer chemotherapeutics agents on contraction competent human skeletal muscle myotubes. A single application of a clinically relevant dose of Irinotecan decreased hMMT contractile force generation, while clear effects on myotube atrophy were observed histologically only at a higher dose. This suggests an off-target effect that may contribute to cancer associated muscle wasting, and highlights the value of the MyoTACTIC platform to non-invasively predict modulators of human skeletal muscle function.
Funder
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada
Ontario Graduate Scholarship
Ontario Graduate Scholarship Toronto Musculoskeletal Centre Fellowship
Heart and Stroke Foundation of Canada
Gouvernement du Canada | Canadian Institutes of Health Research
CIHR
Canada First Research Excellence Fund
Canada Research Chair Program
Ontario Institute for Regenerative Medicine
Canada Research Chair Program Ontario Research Fund Krembil Foundation
Publisher
Springer Science and Business Media LLC
Reference75 articles.
1. Periasamy, M. et al. Role of SERCA Pump in Muscle Thermogenesis and Metabolism. Compr. Physiol. 7, 879–890 (2017).
2. Lauretani, F. et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J. Appl. Physiol. Bethesda Md 1985 95, 1851–1860 (2003).
3. Maltzahn, J., von, Renaud, J.-M., Parise, G. & Rudnicki, M. A. Wnt7a treatment ameliorates muscular dystrophy. Proc. Natl. Acad. Sci. 109, 20614–20619 (2012).
4. Thomason, D. B. & Booth, F. W. Atrophy of the soleus muscle by hindlimb unweighting. J. Appl. Physiol. Bethesda Md 1985 68, 1–12 (1990).
5. Gaschen, F. P. et al. Dystrophin deficiency causes lethal muscle hypertrophy in cats. J. Neurol. Sci. 110, 149–159 (1992).
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献