Author:
Zhang Jinyang,Liu Haiqing,Wang Jinli,Lei Ming,Chen Zimu
Abstract
AbstractA total of 40 fiber reinforced polymer (FRP) and polyvinyl chloride (PVC) confined spontaneous combustion gangue coarse-aggregate concrete (SAC) specimens were subjected to axial compression tests and theoretical studies. The main analysis focused on the impact of the replacement rate of spontaneous combustion gangue (SCG), the type of CFRP confinement, and the number of CFRP layers on the axial compression performance of CFRP–PVC confined SAC (CFRP–PVC–SAC). The results show that CFRP–PVC confinement can effectively enhance the axial compressive capacity, axial deformation, and lateral deformation of the components. The increase in strength ranges from 1.68 to 3.48 times, while the increase in strain ranges from 5.21 to 11.98 times. The crack patterns and expansive behavior of the coal gangue concrete under confinement exhibit significant differences compared to ordinary concrete. In addition, based on the framework of the existing FRP-confined plain concrete model, a modified model is established to facilitate prediction of stress–strain relationships for short columns of CFRP–PVC–SAC, with the calculated results in good agreement with experimental values.
Funder
Liaoning Technical University
Liaoning Province Key R & D Plan Project
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献