Global gene expression analysis of systemic sclerosis myofibroblasts demonstrates a marked increase in the expression of multiple NBPF genes

Author:

Abignano Giuseppina,Hermes Heidi,Piera-Velazquez Sonsoles,Addya Sankar,Del Galdo Francesco,Jimenez Sergio A.

Abstract

AbstractMyofibroblasts are the key effector cells responsible for the exaggerated tissue fibrosis in Systemic Sclerosis (SSc). Despite their importance to SSc pathogenesis, the specific transcriptome of SSc myofibroblasts has not been described. The purpose of this study was to identify transcriptome differences between SSc myofibroblasts and non-myofibroblastic cells. Alpha smooth muscle actin (α-SMA) expressing myofibroblasts and α-SMA negative cells were isolated employing laser capture microdissection from dermal cell cultures from four patients with diffuse SSc of recent onset. Total mRNA was extracted from both cell populations, amplified and analyzed employing microarrays. Results for specific genes were validated by Western blots and by immunohistochemistry. Transcriptome analysis revealed 97 differentially expressed transcripts in SSc myofibroblasts compared with non-myofibroblasts. Annotation clustering of the SSc myofibroblast-specific transcripts failed to show a TGF-β signature. The most represented transcripts corresponded to several different genes from the Neuroblastoma Breakpoint Family (NBPF) of genes. NBPF genes are highly expanded in humans but are not present in murine or rat genomes. In vitro studies employing cultured SSc dermal fibroblasts and immunohistochemistry of affected SSc skin confirmed increased NBPF expression in SSc. These results indicate that SSc myofibroblasts represent a unique cell lineage expressing a specific transcriptome that includes very high levels of transcripts corresponding to numerous NBPF genes. Elevated expression of NBPF genes in SSc myofibroblasts suggests that NBPF gene products may play a role in SSc pathogenesis and may represent a novel therapeutic target.

Funder

EULAR ODP

NIH/NIAMS

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3