Toward understanding of the methoxylated flavonoid biosynthesis pathway in Dracocephalum kotschyi Boiss

Author:

Poursalavati Abdonaser,Rashidi-Monfared Sajad,Ebrahimi Amin

Abstract

AbstractNowadays, with the development and advancement of next-generation sequencing technologies, a new path has been provided for transcriptomic studies. In this study, the transcriptome of Dracocephalum kotschyi Boiss., as an endemic and endangered plant which is contained a large amount of valuable secondary metabolites with antioxidant and anticancer properties, was sequenced. Then functional annotation and gene ontology analysis for 165,597 assembled transcripts were performed, most were associated with the metabolic pathways. This might be because there are various active biochemical pathways in this plant. Furthermore, after comprehensive transcript annotation, the putative genes involved in the main metabolic pathways of D. kotschyi were identified. Then, the biosynthetic pathway of its valuable methoxylated flavones was proposed. Finally, the accumulations of important methoxylated-flavone metabolites in three different tissues were quantified by HPLC. The relative expression of the genes involved in the proposed pathway was investigated by qRT-PCR, which indicated high expression levels in the bud tissue. The present results may lead to the design strategies to preserve the genetic diversity of endangered D. kotschyi plants and apply the new methods for engineering its valuable methoxylated-flavones pathway.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3