Topology optimization of the flat steel shear wall based on the volume constraint and strain energy assumptions under the seismic loading conditions

Author:

Chen Xi,Yan Gongxing,Hosseinzadeh Hasan

Abstract

AbstractIn structural engineering systems, shear walls are two-dimensional vertical elements designed to endure lateral forces acting in-plane, most frequently seismic and wind loads. Shear walls come in a variety of materials and are typically found in high-rise structures. Because steel shear walls are lighter, more ductile, and stronger than other concrete shear walls, they are advised for usage in steel constructions. It is important to remember that the steel shear wall has an infill plate, which can be produced in a variety of forms. The critical zones in flat steel shear walls are the joints and corners where the infill plate and frame meet. The flat infill plate can be modified to improve the strength and weight performance of the steel shear walls. One of these procedures is Topology Optimization (TO) and this method can reduce the weight and also, increase the strength against the cyclic loading sequences. In the current research paper, the TO of the infill steel plate was considered based on the two methods of volume constraint and maximization of strain energy. Four different volumes (i.e., 60%, 70%, 80%, and 90%) were assumed for the mentioned element in the steel shear wall. The obtained results revealed that the topology configuration of CCSSW with 90% volume constraint presented the highest seismic loading performance. The cumulated energy for this type of SSW was around 700 kJ while it was around 600 kJ for other topology optimization configurations.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3