Fengycin induces ion channels in lipid bilayers mimicking target fungal cell membranes

Author:

Zakharova Anastasiia A.,Efimova Svetlana S.ORCID,Malev Valery V.,Ostroumova Olga S.

Abstract

Abstract The one-sided addition of fengycin (FE) to planar lipid bilayers mimicking target fungal cell membranes up to 0.1 to 0.5 μM in the membrane bathing solution leads to the formation of well-defined and well-reproducible single-ion channels of various conductances in the picosiemens range. FE channels were characterized by asymmetric conductance-voltage characteristic. Membranes treated with FE showed nonideal cationic selectivity in potassium chloride bathing solutions. The membrane conductance induced by FE increased with the second power of the lipopeptide aqueous concentration, suggesting that at least FE dimers are involved in the formation of conductive subunits. The pore formation ability of FE was not distinctly affected by the molecular shape of membrane lipids but strongly depended on the presence of negatively charged species in the bilayer. FE channels were characterized by weakly pronounced voltage gating. Small molecules known to modify the transmembrane distribution of electrical potential and the lateral pressure profile were used to modulate the channel-forming activity of FE. The observed effects of membrane modifiers were attributed to changes in lipid packing and lipopeptide oligomerization in the membrane.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3