Abstract
AbstractMeasurement-based quantum correlations (MbQCs) depend on how strongly an observer perturbs the unobserved system. This distinctive property differentiates MbQCs from traditional quantum correlations such as entanglement and discord. We utilize MbQCs to elucidate quantum information processing capabilities in quantum computation and quantum state discrimination. We show that MbQCs exist more generally than entanglement and discord in optimal assisted quantum state discrimination and in a deterministic quantum computation with a single qubit. We also propose an MbQC-based dimension witness and analyze it in different noisy and noiseless scenarios.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献