Enhanced SOC estimation of lithium ion batteries with RealTime data using machine learning algorithms

Author:

D. Obuli Pranav,Babu Preethem S.,V. Indragandhi,B. Ashok,S. Vedhanayaki,C. Kavitha

Abstract

AbstractAccurately estimating Battery State of Charge (SOC) is essential for safe and optimal electric vehicle operation. This paper presents a comparative assessment of multiple machine learning regression algorithms including Support Vector Machine, Neural Network, Ensemble Method, and Gaussian Process Regression for modelling the complex relationship between real-time driving data and battery SOC. The models are trained and tested on extensive field data collected from diverse drivers across varying conditions. Statistical performance metrics evaluate the SOC prediction accuracy on the test set. Gaussian process regression demonstrates superior precision surpassing the other techniques with the lowest errors. Case studies analyse model competence in mimicking actual battery charge/discharge characteristics responding to changing drivers, temperatures, and drive cycles. The research provides a reliable data-driven framework leveraging advanced analytics for precise real-time SOC monitoring to enhance battery management.

Funder

Royal Academy of Engineering

Vellore Institute of Technology, Vellore

Publisher

Springer Science and Business Media LLC

Reference52 articles.

1. Xie, J. et al. Battery electric vehicles for modern power systems—A comprehensive review on technological evolutions and integration paradigms. Renew. Energy 183, 459–489 (2022).

2. Liu, Z., Zhang, Q., Huisingh, D. & Wang, Y. Carbon emissions of electric vehicles based on electricity generation mix: A regional assessment of China. Renew. Energy 163, 1217–1233 (2021).

3. Wang, Z., Zhang, X., Sun, Y. & Liu, W. A comprehensive overview of hybrid electric vehicles. Appl. Energy 269, 115054 (2020).

4. Zhang, X., Sahinoglu, Z., Wada, T., Hara, S. & Sakurai, J. Recent progress on lithium ion battery performance degradation analysis and state estimation technologies: A review. J. Energy Storage 28, 101230 (2020).

5. Chu, S., Majumdar, A., Pan, J., Chiang, Y. M. & Wu, Z. Why are commercial lithium ion batteries unstable? An overview of stability issues, consequences, and remedies. J. Power Sources 493, 229562 (2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3