Investigations of an inducible intact dystrophin gene excision system in cardiac and skeletal muscle in vivo

Author:

Bez Batti Angulski Addeli,Bauer John,Cohen Houda,Kobuke Kazuhiro,Campbell Kevin P.,Metzger Joseph M.

Abstract

AbstractWe sought here to induce the excision of a large intragenic segment within the intact dystrophin gene locus, with the ultimate goal to elucidate dystrophin protein function and stability in striated muscles in vivo. To this end, we implemented an inducible-gene excision methodology using a floxed allele approach, demarcated by dystrophin exons 2–79, in complementation with a cardiac and skeletal muscle directed gene deletion system for spatial–temporal control of dystrophin gene excision in vivo. Main findings of this study include evidence of significant intact dystrophin gene excision, ranging from ~ 25% in heart muscle to ~ 30–35% in skeletal muscles in vivo. Results show that despite evidence of significant dystrophin gene excision, no significant decrease in dystrophin protein content was evident by Western blot analysis, at three months post excision in skeletal muscles or by 6 months post gene excision in heart muscle. Challenges of in vivo dystrophin gene excision revealed acute deleterious effects of tamoxifen on striated muscles, including a transient down regulation in dystrophin gene transcription in the absence of dystrophin gene excision. In addition, technical limitations of incomplete dystrophin gene excision became apparent that, in turn, tempered interpretation. Collectively, these findings are in keeping with earlier studies suggesting the dystrophin protein to be long-lived in striated muscles in vivo; however, more rigorous quantitative analysis of dystrophin stability in vivo will require future works in which more complete gene excision can be demonstrated, and without significant off-target effects of the gene deletion experimental platform per se.

Funder

National Institutes of Health

Wellstone Muscular Dystrophy Specialized Research Center

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3