The normal impact stiffness of a debris-flow flexible barrier

Author:

Huo MiaoORCID,Zhou Jia-wenORCID,Zhao Jiangtao,Zhou Hong-weiORCID,Li Jidong,Liu Xing

Abstract

AbstractThis paper proposes a normal oriented impact stiffness of a three-supporting cable flexible barrier under a small pretension stress to estimate the structural load behaviour, and employs two categories of small-scale debris flows (coarse and fine) to explore the stiffness evolution through physical model experiments with high-speed photography and load sensing. Results suggest that the particle-structure contact is essential to the normal load effect. Coarse debris flow performs more frequent particle-structure contact and exerts evident momentum flux, while fine debris flows with few physical collisions impart much smaller one. The middle-sited cable that receives only tensile force from vertical equivalent cable-net joint system exhibits indirect load behaviour. The bottom-sited cable shows high load feedback due to the sum of direct contact of debris flow and tensile forces. The relationship between impact loads and maximum cable deflections can be explained by power functions according to quasi-static theory. The impact stiffness is not just affected by the particle-structure contact but by the flow inertia and particle collision effect. Savage number Nsav and Bagnold number Nbag manage to depict the dynamical effects on the normal stiffness Di. Experiments indicate that Nsav has positive linear correlation with the nondimensionalization of Di, whilst Nbag has positive power correlation with the nondimensionalization of Di. This idea is an alternative scope for the study on flow-structure interaction and may contribute to the parameter identification in numerical simulation of the debris flow-structure interaction and the optimization of the design standardization.

Funder

Natural Science Foundation of Sichuan Province

Sichuan Province Science and Technology Support Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3