Responsive deep brain stimulation for the treatment of Tourette syndrome

Author:

Okun Michael S.,Cagle Jackson,Gomez Julieth,Bowers Dawn,Wong Joshua,Foote Kelly D.,Gunduz Aysegul

Abstract

AbstractTo report the results of ‘responsive’ deep brain stimulation (DBS) for Tourette syndrome (TS) in a National Institutes of Health funded experimental cohort. The use of ‘brain derived physiology’ as a method to trigger DBS devices to deliver trains of electrical stimulation is a proposed approach to address the paroxysmal motor and vocal tic symptoms which appear as part of TS. Ten subjects underwent bilateral staged DBS surgery and each was implanted with bilateral centromedian thalamic (CM) region DBS leads and bilateral M1 region cortical strips. A series of identical experiments and data collections were conducted on three groups of consecutively recruited subjects. Group 1 (n = 2) underwent acute responsive DBS using deep and superficial leads. Group 2 (n = 4) underwent chronic responsive DBS using deep and superficial leads. Group 3 (n = 4) underwent responsive DBS using only the deep leads. The primary outcome measure for each of the 8 subjects with chronic responsive DBS was calculated as the pre-operative baseline Yale Global Tic Severity Scale (YGTSS) motor subscore compared to the 6 month embedded responsive DBS setting. A responder for the study was defined as any subject manifesting a ≥ 30 points improvement on the YGTSS motor subscale. The videotaped Modified Rush Tic Rating Scale (MRVTRS) was a secondary outcome. Outcomes were collected at 6 months across three different device states: no stimulation, conventional open-loop stimulation, and embedded responsive stimulation. The experience programming each of the groups and the methods applied for programming were captured. There were 10 medication refractory TS subjects enrolled in the study (5 male and 5 female) and 4/8 (50%) in the chronic responsive eligible cohort met the primary outcome manifesting a reduction of the YGTSS motor scale of ≥ 30% when on responsive DBS settings. Proof of concept for the use of responsive stimulation was observed in all three groups (acute responsive, cortically triggered and deep DBS leads only). The responsive approach was safe and well tolerated. TS power spectral changes associated with tics occurred consistently in the low frequency 2–10 Hz delta-theta-low alpha oscillation range. The study highlighted the variety of programming strategies which were employed to achieve responsive DBS and those used to overcome stimulation induced artifacts. Proof of concept was also established for a single DBS lead triggering bi-hemispheric delivery of therapeutic stimulation. Responsive DBS was applied to treat TS related motor and vocal tics through the application of three different experimental paradigms. The approach was safe and effective in a subset of individuals. The use of different devices in this study was not aimed at making between device comparisons, but rather, the study was adapted to the current state of the art in technology. Overall, four of the chronic responsive eligible subjects met the primary outcome variable for clinical effectiveness. Cortical physiology was used to trigger responsive DBS when therapy was limited by stimulation induced artifacts.

Funder

NIH

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3