Development of an array of molecular tools for the identification of khapra beetle (Trogoderma granarium), a destructive beetle of stored food products

Author:

Wu Yunke,Domingue Michael J.,McGraw Alana R.,Vieira Kendra A.,Palmeri Marjorie Z.,Myers Scott W.

Abstract

AbstractTrogoderma granarium Everts, the khapra beetle, native to the Indian subcontinent, is one of the world’s most destructive pests of stored food products. Early detection of this pest facilitates prompt response towards the invasion and prevents the need for costly eradication efforts. Such detection requires proper identification of T. granarium, which morphologically resembles some more frequently encountered, non-quarantine congeners. All life stages of these species are difficult to distinguish using morphological characters. Additionally, biosurveillance trapping can result in the capture of large numbers of specimens awaiting identification. To address these issues, we aim to develop an array of molecular tools to rapidly and accurately identify T. granarium among non-target species. Our crude, cheap DNA extraction method performed well for Trogoderma spp. and is suitable for downstream analyses including sequencing and real-time PCR (qPCR). We developed a simple quick assay usingrestriction fragment length polymorphism to distinguish between T. granarium and the closely related, congeneric T. variabile Ballion and T. inclusum LeConte. Based on newly generated and published mitochondrial sequence data, we developed a new multiplex TaqMan qPCR assay for T. granarium with improved efficiency and sensitivity over existing qPCR assays. These new tools benefit regulatory agencies and the stored food products industry by providing cost- and time-effective solutions to enhance the identification of T. granarium from related species. They can be added to the existing pest detection toolbox. The selection of which method to use would depend on the intended application.

Funder

USDA Plant Protection Act 7721

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3