Effective processing pipeline PACE 2.0 for enhancing chest x-ray contrast and diagnostic interpretability

Author:

Siracusano Giulio,La Corte Aurelio,Nucera Annamaria Giuseppina,Gaeta Michele,Chiappini Massimo,Finocchio Giovanni

Abstract

AbstractPreprocessing is an essential task for the correct analysis of digital medical images. In particular, X-ray imaging might contain artifacts, low contrast, diffractions or intensity inhomogeneities. Recently, we have developed a procedure named PACE that is able to improve chest X-ray (CXR) images including the enforcement of clinical evaluation of pneumonia originated by COVID-19. At the clinical benchmark state of this tool, there have been found some peculiar conditions causing a reduction of details over large bright regions (as in ground-glass opacities and in pleural effusions in bedridden patients) and resulting in oversaturated areas. Here, we have significantly improved the overall performance of the original approach including the results in those specific cases by developing PACE2.0. It combines 2D image decomposition, non-local means denoising, gamma correction, and recursive algorithms to improve image quality. The tool has been evaluated using three metrics: contrast improvement index, information entropy, and effective measure of enhancement, resulting in an average increase of 35% in CII, 7.5% in ENT, 95.6% in EME and 13% in BRISQUE against original radiographies. Additionally, the enhanced images were fed to a pre-trained DenseNet-121 model for transfer learning, resulting in an increase in classification accuracy from 80 to 94% and recall from 89 to 97%, respectively. These improvements led to a potential enhancement of the interpretability of lesion detection in CXRs. PACE2.0 has the potential to become a valuable tool for clinical decision support and could help healthcare professionals detect pneumonia more accurately.

Funder

Ministero dell'Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3