The impact of bilateral anodal transcranial direct current stimulation of the premotor and cerebellar cortices on physiological and performance parameters of gymnastic athletes: a randomized, cross-over, sham-controlled study

Author:

Anoushiravani Sajjad,Alizadehgoradel Jaber,Iranpour Asgar,Yousefi Bilehsavar Omid,Pouresmali Asghar,Nitsche Michael A.,Salehinejad Mohammad Ali,Mosayebi-Samani Mohsen,Zoghi Maryam

Abstract

AbstractProfessional sports performance relies critically on the interaction between the brain and muscles during movement. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique which modulates cortical excitability and can be used to improve motor performance in athletes. The present study aimed to investigate the effect of bilateral anodal tDCS (2 mA, 20 min) over the premotor cortex or cerebellum on motor and physiological functions and peak performance of professional gymnastics athletes. Seventeen professional gymnastics athletes participated in a randomized, sham-controlled, crossover study. In this study, we assessed the efficacy of two anodal tDCS protocols (2 mA, 20 min) with stimulation over the bilateral premotor cortex or cerebellum with the return electrodes placed over the opposite supraorbital areas. Power speed, strength coordination, endurance, static and dynamic strength, static and dynamic flexibility, and rating of perceived exertion were measured before and immediately after tDCS interventions (bilateral anodal tDCS over premotor cortices, anodal tDCS over the cerebellum, and sham tDCS). Additionally, physiological muscle performance parameters, including maximum voluntary isometric contraction (MVIC) of upper body muscles, were assessed during tDCS. Bilateral anodal tDCS over the premotor cortex, compared to anodal tDCS over the cerebellum and sham tDCS conditions, significantly improved power speed, strength coordination, and static and dynamic strength variables of professional gymnastics athletes. Furthermore, bilateral anodal tDCS over the cerebellum, compared to sham tDCS, significantly improved strength coordination. Moreover, bilateral premotor anodal tDCS significantly increased MVIC of all upper body muscles during stimulation, while anodal tDCS over the cerebellum increased MVIC in only some muscles. Bilateral anodal tDCS over the premotor cortex, and to a minor degree over the cerebellum, might be suited to improve some aspects of motor and physiological functions and peak performance levels of professional gymnastics athletes.Clinical Trial Registration ID: IRCT20180724040579N2.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3