LNA blockers for improved amplification selectivity

Author:

Prout Jaime,Tian Michael,Palladino Alicia,Wright Jason,Thompson John F.

Abstract

AbstractLNA-containing oligonucleotides bind DNA more tightly than standard DNA, so they can interact with targeted sequences and affect multiple processes. When a desired DNA is present at low concentrations relative to nearly identical undesired DNAs, LNAs can block amplification of unwanted DNAs. Using a short rAAV and synthetic DNA sequence as a model, we studied the length, number, and positioning of LNA bases to improve blocker effectiveness. Oligonucleotides 18–24 bases long with LNAs at every other position were most effective. Highly degenerate targets were used to characterize the impact of mismatches on blocking. Mismatches at LNA ends had little impact on blocking activity. Single and double mismatches were tolerated with longer blockers, especially if the mismatches were near LNA ends. Shorter LNAs were more selective, with > 1 mismatch preventing effective blocking. Neither the strand to which a blocker bound nor the distance between the blocker and priming sites greatly impacted blocking efficiency. We used these findings to design blockers of wild-type DNA versus the single-base A1AT PiZ allele. Blockers are most specific when the mismatch is located away from the LNA 5′ end. Pairs of partially overlapping blockers on opposite strands with a centrally-located mismatch have maximal activity and specificity.

Funder

Homology Medicines Inc

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3