Abstract
AbstractCircadian clocks regulate physiological functions, including energy metabolism, along the 24-hour day cycle. The mammalian clock system is organized in a hierarchical manner with a coordinating pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN). The SCN clock is reset primarily by the external light-dark cycle while other zeitgebers such as the timing of food intake are potent synchronizers of many peripheral tissue clocks. Under conflicting zeitgeber conditions, e.g. during shift work, phase synchrony across the clock network is disrupted promoting the development of metabolic disorders. We established a zeitgeber desynchrony (ZD) paradigm to quantify the differential contributions of the two main zeitgebers, light and food, to the resetting of specific tissue clocks and the effect on metabolic homeostasis in mice. Under 28-hour light-dark and 24-hour feeding-fasting conditions SCN and peripheral clock, as well as activity and hormonal rhythms showed specific periodicities aligning in-between those of the two zeitgebers. During ZD, metabolic homeostasis was cyclic with mice gaining weight under synchronous and losing weight under conflicting zeitgeber conditions. In summary, our study establishes an experimental paradigm to compare zeitgeber input in vivo and study the physiological consequences of chronodisruption.
Funder
Deutsche Forschungsgemeinschaft
Volkswagen Foundation
Publisher
Springer Science and Business Media LLC
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献