An adapted model predictive control MPPT for validation of optimum GMPP tracking under partial shading conditions

Author:

Siddique Muhammad Abu Bakar,Zhao Dongya,Rehman Ateeq Ur,Ouahada Khmaies,Hamam Habib

Abstract

AbstractThe energy generation efficiency of photovoltaic (PV) systems is compromised by partial shading conditions (PSCs) of solar irradiance with many maximum power points (MPPs) while tracking output power. Addressing this challenge in the PV system, this article proposes an adapted hybrid control algorithm that tracks the global maximum power point (GMPP) by preventing it from settling at different local maximum power points (LMPPs). The proposed scheme involves the deployment of a 3 × 3 multi-string PV array with a single modified boost converter model and an adapted perturb and observe-based model predictive control (APO-MPC) algorithm. In contrast to traditional strategies, this technique effectively extracts and stabilizes the output power by predicting upcoming future states through the computation of reference current. The boost converter regulates voltage and current levels of the whole PV array, while the proposed algorithm dynamically adjusts the converter's operation to track the GMPP by minimizing the cost function of MPC. Additionally, it reduces hardware costs by eliminating the need for an output current sensor, all while ensuring effective tracking across a variety of climatic profiles. The research illustrates the efficient validation of the proposed method with accurate and stable convergence towards the GMPP with minimal sensors, consequently reducing overall hardware expenses. Simulation and hardware-based outcomes reveal that this approach outperforms classical techniques in terms of both cost-effectiveness and power extraction efficiency, even under PSCs of constant, rapidly changing, and linearly changing irradiances.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3