Anthracene phytotoxicity in the freshwater flagellate alga Euglena agilis Carter

Author:

Kottuparambil SreejithORCID,Park Jihae

Abstract

Abstract The freshwater flagellate alga Euglena agilis Carter was exposed to the polycyclic aromatic hydrocarbon (PAH) anthracene for 96 h under optimal photosynthetically active radiation (PAR), and responses of growth, photosynthetic pigment production, and photosynthetic efficiency were assessed. Anthracene reduced the growth rate (μ) and levels of chlorophyll a (Chl a), chlorophyll b (Chl b), and total carotenoids. The growth rate was more sensitive than photosynthetic parameters, with a median effective concentration (EC50) of 4.28 mg L−1. Between 5 and 15 mg L−1, anthracene inhibited the maximum quantum yield (Fv/Fm) of photosystem II (PSII) and the maximum photosynthetic electron transport rate through PSII (rETRmax) with EC50 values of 14.88 and 11.8 mg L−1, respectively. At all anthracene concentrations, intracellular reactive oxygen species (ROS) were elevated, indicating increased oxidative stress. Anthracene presumably reduced the PSII efficiency of photochemical energy regulation and altered the photochemistry through intracellular ROS formation. Acute exposure to PAHs may induce severe physiological changes in phytoplankton cells, which may influence vital ecological processes within the aquatic environments. Additionally, growth and Chl a content may serve as sensitive risk assessment parameters of anthracene toxicity in water management since EC50 values for both overlap with anthracene levels (8.3 mg L−1) permitted by the US Environmental Protection Agency (USEPA).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference68 articles.

1. Gala, W. R. & Giesy, J. P. Photo–induced toxicity of anthracene to the green alga, Selenastrum capricornutum. Archives of Environmental Contamination and Toxicology 23, 316–323 (1992).

2. Chaudhry, G. R. Biological degradation and bioremediation of toxic chemicals. Dioscorides Press, Portland, OR, USA (1994).

3. Behera, B. K. et al. Polycyclic Aromatic Hydrocarbons (PAHs) in inland aquatic ecosystems: Perils and remedies through biosensors and bioremediation. Environmental Pollution 241, 212–233 (2018).

4. Andersson, T. A. et al. Solubility of Acenaphthene, Anthracene, and Pyrene in Water At 50 °C to 300 °C. Journal of Chemical & Engineering Data 50, 1177–1183 (2005).

5. Krylov, S. N. et al. Mechanistic quantitative structure–activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons: I Physical model based on chemical kinetics in a two–compartment system. Environmental Toxicology and Chemistry 16, 2283–2295 (1997).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3