An adjustable acoustic metamaterial cell using a magnetic membrane for tunable resonance

Author:

Gardiner Alicia,Domingo-Roca Roger,Windmill James F. C.,Feeney Andrew

Abstract

AbstractAcoustic metamaterials are growing in popularity for sound applications including noise control. Despite this, there remain significant challenges associated with the fabrication of these materials for the sub-100 Hz regime, because acoustic metamaterials for such frequencies typically require sub-mm scale features to control sound waves. Advances in additive manufacturing technologies have provided practical methods for rapid fabrication of acoustic metamaterials. However, there is a relatively high sensitivity of their resonant characteristics to sub-mm deviations in geometry, pushing the limits of additive manufacturing. One way of overcoming this is via active control of device resonance. Here, an acoustic metamaterial cell with adjustable resonance is demonstrated for the sub-100 Hz regime. A functionally superparamagnetic membrane—devised to facilitate the fabrication process by eliminating magnetic poling requirements—is engineered using stereolithography, and its mechanical and acoustic properties are experimentally measured using laser Doppler vibrometry and electret microphone testing, with a mathematical model developed to predict the cell response. It is demonstrated that an adjustable magnetic acoustic metamaterial can be fabricated at ultra-subwavelength dimensions ($$\le \lambda$$ λ /77.5), exhibiting adjustable resonance from 88.73 to 86.63 Hz. It is anticipated that this research will drive new innovations in adjustable metamaterials, including wider frequency ranges.

Funder

Engineering & Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3