The preliminary in vitro study and application of deep learning algorithm in cone beam computed tomography image implant recognition

Author:

Ou-yang Shaobo,Han Shuqin,Sun Dan,Wu Hongping,Chen Jianping,Cai Ying,Yin Dongmei,Ou-yang Huidan,Liao Lan

Abstract

AbstractTo properly repair and maintain implants, which are bone tissue implants that replace natural tooth roots, it is crucial to accurately identify their brand and specification. Deep learning has demonstrated outstanding capabilities in analysis, such as image identification and classification, by learning the inherent rules and degrees of representation of data models. The purpose of this study is to evaluate deep learning algorithms and their supporting application software for their ability to recognize and categorize three dimensional (3D) Cone Beam Computed Tomography (CBCT) images of dental implants. By using CBCT technology, the 3D imaging data of 27 implants of various sizes and brands were obtained. Following manual processing, the data were transformed into a data set that had 13,500 two-dimensional data. Nine deep learning algorithms including GoogleNet, InceptionResNetV2, InceptionV3, ResNet50, ResNet50V2, ResNet101, ResNet101V2, ResNet152 and ResNet152V2 were used to perform the data. Accuracy rates, confusion matrix, ROC curve, AUC, number of model parameters and training times were used to assess the efficacy of these algorithms. These 9 deep learning algorithms achieved training accuracy rates of 100%, 99.3%, 89.3%, 99.2%, 99.1%, 99.5%, 99.4%, 99.5%, 98.9%, test accuracy rates of 98.3%, 97.5%, 94.8%, 85.4%, 92.5%, 80.7%, 93.6%, 93.2%, 99.3%, area under the curve (AUC) values of 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00. When used to identify implants, all nine algorithms perform satisfactorily, with ResNet152V2 achieving the highest test accuracy, classification accuracy, confusion matrix area under the curve, and receiver operating characteristic curve area under the curve area. The results showed that the ResNet152V2 has the best classification effect on identifying implants. The artificial intelligence identification system and application software based on this algorithm can efficiently and accurately identify the brands and specifications of 27 classified implants through processed 3D CBCT images in vitro, with high stability and low recognition cost.

Funder

Natural Science Foundation of Jiangxi Province

National Natural Science Foundation of China

Key Research and Development Program of Jiangxi Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3