Author:
Dash Sabyasachi,Balasubramaniam Muthukumar,Martínez-Rivera Freddyson J.,Godino Arthur,Peck Emily G.,Patnaik Srinivas,Suar Mrutyunjay,Calipari Erin S.,Nestler Eric J.,Villalta Fernando,Dash Chandravanu,Pandhare Jui
Abstract
AbstractMiR-124 is a highly expressed miRNA in the brain and regulates genes involved in neuronal function. We report that miR-124 post-transcriptionally regulates PARP-1. We have identified a highly conserved binding site of miR-124 in the 3′-untranslated region (3′UTR) of Parp-1 mRNA. We demonstrate that miR-124 directly binds to the Parp-1 3′UTR and mutations in the seed sequences abrogate binding between the two RNA molecules. Luciferase reporter assay revealed that miR-124 post-transcriptionally regulates Parp-1 3′UTR activity in a dopaminergic neuronal cell model. Interestingly, the binding region of miR-124 in Parp-1 3′UTR overlapped with the target sequence of miR-125b, another post-transcriptional regulator of Parp-1. Our results from titration and pull-down studies revealed that miR-124 binds to Parp-1 3′UTR with greater affinity and confers a dominant post-transcriptional inhibition compared to miR-125b. Interestingly, acute or chronic cocaine exposure downregulated miR-124 levels concomitant with upregulation of PARP-1 protein in dopaminergic-like neuronal cells in culture. Levels of miR-124 were also downregulated upon acute or chronic cocaine exposure in the mouse nucleus accumbens (NAc)-a key reward region of brain. Time-course studies revealed that cocaine treatment persistently downregulated miR-124 in NAc. Consistent with this finding, miR-124 expression was also significantly reduced in the NAc of animals conditioned for cocaine place preference. Collectively, these studies identify Parp-1 as a direct target of miR-124 in neuronal cells, establish miR-124 as a cocaine-regulated miRNA in the mouse NAc, and highlight a novel pathway underlying the molecular effects of cocaine.
Funder
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献