Ultralow radiant exposure of a short-pulsed laser to disrupt melanosomes with localized thermal damage through a turbid medium

Author:

Shimojo Yu,Nishimura Takahiro,Tsuruta Daisuke,Ozawa Toshiyuki

Abstract

AbstractShort-pulsed lasers can treat dermal pigmented lesions through selective photothermolysis. The irradiated light experiences multiple scattering by the skin and is absorbed by abnormal melanosomes as well as by normal blood vessels above the target. Because the fluence is extremely high, the absorbed light can cause thermal damage to the adjacent tissue components, leading to complications. To minimize radiant exposure and reduce the risk of burns, a model of the melanosome-disruption threshold fluence (MDTF) has been developed that accounts for the light-propagation efficiency in the skin. However, the light-propagation efficiency is attenuated because of multiple scattering, which limits the extent to which the radiant exposure required for treatment can be reduced. Here, this study demonstrates the principle of melanosome disruption with localized thermal damage through a turbid medium by ultralow radiant exposure of a short-pulsed laser. The MDTF model was combined with a wavefront-shaping technique to design an irradiation condition that can increase the light-propagation efficiency to the target. Under this irradiation condition, melanosomes were disrupted at a radiant exposure 25 times lower than the minimal value used in conventional laser treatments. Furthermore, almost no thermal damage to the skin was confirmed through a numerical simulation. These experimental and numerical results show the potential for noninvasive melanosome disruption and may lead to the improvement of the safety of short-pulsed laser treatment.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3