A retrospective study of deep learning generalization across two centers and multiple models of X-ray devices using COVID-19 chest-X rays

Author:

Fernández-Miranda Pablo MenéndezORCID,Fraguela Enrique Marqués,de Linera-Alperi Marta ÁlvarezORCID,Cobo MiriamORCID,del Barrio Amaia PérezORCID,González David RodríguezORCID,Vega José A.ORCID,Iglesias Lara LloretORCID

Abstract

AbstractGeneralization of deep learning (DL) algorithms is critical for the secure implementation of computer-aided diagnosis systems in clinical practice. However, broad generalization remains to be a challenge in machine learning. This research aims to identify and study potential factors that can affect the internal validation and generalization of DL networks, namely the institution where the images come from, the image processing applied by the X-ray device, and the type of response function of the X-ray device. For these purposes, a pre-trained convolutional neural network (CNN) (VGG16) was trained three times for classifying COVID-19 and control chest radiographs with the same hyperparameters, but using different combinations of data acquired in two institutions by three different X-ray device manufacturers. Regarding internal validation, the addition of images from an external institution to the training set did not modify the algorithm’s internal performance, however, the inclusion of images acquired by a device from a different manufacturer decreased the performance up to 8% (p < 0.05). In contrast, generalization across institutions and X-ray devices with the same type of response function was achieved. Nonetheless, generalization was not observed across devices with different types of response function. This factor was the key impediment to achieving broad generalization in our research, followed by the device’s image-processing and the inter-institutional differences, which both reduced generalization performance to 18.9% (p < 0.05), and 9.8% (p < 0.05), respectively. Finally, clustering analysis with features extracted by the CNN was performed, revealing a substantial dependence of feature values extracted by the pre-trained CNN on the X-ray device which acquired the images.

Funder

Consejo Superior de Investigaciones Científicas

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3