Applying an explainable machine learning model might reduce the number of negative appendectomies in pediatric patients with a high probability of acute appendicitis

Author:

Males Ivan,Boban Zvonimir,Kumric Marko,Vrdoljak Josip,Berkovic Karlotta,Pogorelic Zenon,Bozic Josko

Abstract

AbstractThe diagnosis of acute appendicitis and concurrent surgery referral is primarily based on clinical presentation, laboratory and radiological imaging. However, utilizing such an approach results in as much as 10–15% of negative appendectomies. Hence, in the present study, we aimed to develop a machine learning (ML) model designed to reduce the number of negative appendectomies in pediatric patients with a high clinical probability of acute appendicitis. The model was developed and validated on a registry of 551 pediatric patients with suspected acute appendicitis that underwent surgical treatment. Clinical, anthropometric, and laboratory features were included for model training and analysis. Three machine learning algorithms were tested (random forest, eXtreme Gradient Boosting, logistic regression) and model explainability was obtained. Random forest model provided the best predictions achieving mean specificity and sensitivity of 0.17 ± 0.01 and 0.997 ± 0.001 for detection of acute appendicitis, respectively. Furthermore, the model outperformed the appendicitis inflammatory response (AIR) score across most sensitivity–specificity combinations. Finally, the random forest model again provided the best predictions for discrimination between complicated appendicitis, and either uncomplicated acute appendicitis or no appendicitis at all, with a joint mean sensitivity of 0.994 ± 0.002 and specificity of 0.129 ± 0.009. In conclusion, the developed ML model might save as much as 17% of patients with a high clinical probability of acute appendicitis from unnecessary surgery, while missing the needed surgery in only 0.3% of cases. Additionally, it showed better diagnostic accuracy than the AIR score, as well as good accuracy in predicting complicated acute appendicitis over uncomplicated and negative cases bundled together. This may be useful in centers that advocate for the conservative treatment of uncomplicated appendicitis. Nevertheless, external validation is needed to support these findings.

Publisher

Springer Science and Business Media LLC

Reference36 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3