Interplay of the disorder and strain in gallium oxide

Author:

Azarov Alexander,Venkatachalapathy Vishnukanthan,Karaseov Platon,Titov Andrei,Karabeshkin Konstantin,Struchkov Andrei,Kuznetsov Andrej

Abstract

AbstractIon irradiation is a powerful tool to tune properties of semiconductors and, in particular, of gallium oxide (Ga2O3) which is a promising ultra-wide bandgap semiconductor exhibiting phase instability for high enough strain/disorder levels. In the present paper we observed an interesting interplay between the disorder and strain in monoclinic β-Ga2O3 single crystals by comparing atomic and cluster ion irradiations as well as atomic ions co-implants. The results obtained by a combination of the channeling technique, X-ray diffraction and theoretical calculations show that the disorder accumulation in β-Ga2O3 exhibits superlinear behavior as a function of the collision cascade density. Moreover, the level of strain in the implanted region can be engineered by changing the disorder conditions in the near surface layer. The results can be used for better understanding of the radiation effects in β-Ga2O3 and imply that disorder/strain interplay provides an additional degree of freedom to maintain desirable strain in Ga2O3, potentially applicable to modify the rate of the polymorphic transitions in this material.

Funder

Norges Forskningsråd

Russian Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3