High-purity foam-like micron-sized gold cage material with tunable plasmon properties

Author:

Dong Shuo,Yi Lin,Cheng Lexiao,Li Shijian,Yang Weiming,Wang Zhebin,Jiang Shaoen

Abstract

AbstractHerein, by growing mono dispersed gold nanoparticles (MNPAu) on the surface of polystyrene (PS)/nanogold (Au) core–shell composites (PS@Au), we successfully synthesized a micron-sized gold cage (2.6–10.7 μm), referred to as PS@Au@MNPAu for the first time. The new micron-gold cage materials exhibit broadband absorption range from near-ultraviolet to near-infrared, which is unlike the conventional nanogold core–shell structure. The uniform growth of MNPAu on the surface forms a new photonic crystal spectrum. The strong coupling of the spectra causes anomalous absorption in the ultraviolet-near infrared band (400–900 nm). Furthermore, by removing the PS core, a nanogold cavity structure referred to as Au@MNPAu was prepared. This structure demonstrated a high purity (> 97 wt%), low density (9–223 mg/cm3), and high specific surface area (854 m2/g). As the purification process progressed, the MNPAu coupling on the surface of the micro-gold cage strengthened, resulting in the formation of peaks around 370 nm, plasma resonant peaks around 495 nm, and structural bands of photonic crystal peaks around 850 nm. The micron-sized gold cage provides hybridized and tunable plasmonic systems. The theoretical simulations indicate that this plasmon anomalous absorption phenomena can be understood as the novel form of the topological structural transitions near the percolation threshold, which is consistent experimental measurements.

Funder

Laser Fusion Research Center, China Academy of Engineering Physics

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3