Linear analysis of Atwood number effects on shear instability in the elastic–plastic solids

Author:

Wang Xi,Hu Xiao-Mian,Wang Sheng-Tao,Pan Hao,Yin Jian-Wei

Abstract

AbstractThe evolution of shear instability between elastic–plastic solid and ideal fluid which is concerned in oblique impact is studied by developing an approximate linear theoretical model. With the velocities expressed by the velocity potentials from the incompressible and irrotational continuity equations and the pressures obtained by integrating momentum equations with arbitrary densities, the motion equations of the interface amplitude are deduced by considering the continuity of normal velocities and the force equilibrium with the perfectly elastic–plastic properties of solid at interface. The completely analytical formulas of the growth rate and the amplitude evolution are achieved by solving the motion equations. Consistent results are performed by the model and 2D Lagrange simulations. The characteristics of the amplitude development and Atwood number effects on the growth are discussed. The growth of the amplitude is suppressed by elastic–plastic properties of solids in purely elastic stage or after elastic–plastic transition, and the amplitude oscillates if the interface is stable. The system varies from stable to unstable state as Atwood number decreasing. For large Atwood number, elastic–plastic properties play a dominant role on the interface evolution which may influence the formation of the wavy morphology of the interface while metallic plates are suffering obliquely impact.

Funder

Science Challenge Project

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference45 articles.

1. Lord, K. Hydrokinetic solutions and observations. Philos. Mag. 42, 362–377 (1871).

2. von Helmholtz, H. On discontinuous movements of fluid. Philos. Mag. 36, 337 (1868).

3. Drazin, P. G. & Reid, W. H. Hydrodynamic Stability (Cambridge University Press, 1981).

4. Chandrasekhar, S. Hydrodynamics and Hydromagnetic Stability (Oxford University Press, 1961).

5. Birkhoff, G. Hydrodynamics: A Study in Logic, Fact, and Similitude 2nd edn (Princeton University, 1960; Inostrannaya Literatura, 1963).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3