Computational fluid–structure interaction analysis of flapping uvula on aerodynamics and pharyngeal vibration in a pediatric airway

Author:

Chen Yicheng,Feng Xin,Shi Xie-Qi,Cai Weihua,Li Biao,Zhao Yijun

Abstract

AbstractThe uvula flapping is one of the most distinctive features of snoring and is critical in affecting airway aerodynamics and vibrations. This study aimed to elucidate the mechanism of pharyngeal vibration and pressure fluctuation due to uvula flapping employing fluid–structure interaction simulations. The followings are the methodology part: we constructed an anatomically accurate pediatric pharynx model and put attention on the oropharynx region where the greatest level of upper airway compliance was reported to occur. The uvula was assumed to be a rigid body with specific flapping frequencies to guarantee proper boundary conditions with as little complexity as possible. The airway tissue was considered to have a uniform thickness. It was found that the flapping frequency had a more significant effect on the airway vibration than the flapping amplitude, as the flapping uvula influenced the pharyngeal aerodynamics by altering the jet flow from the mouth. Breathing only through the mouth could amplify the effect of flapping uvula on aerodynamic changes and result in more significant oropharynx vibration.

Funder

Harbin Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3