Development of a distributed nonlinear Muskingum model by considering snowmelt effects for flood routing in the Red River

Author:

Atashi Vida,Barati Reza,Lim Yeo Howe

Abstract

AbstractThis research paper presents the development of a nonlinear Muskingum model which achieves precise flood routing through river reaches while considering lateral inflow conditions. Fourteen pairs of flood hydrograph found at two specific United States Geological Survey (USGS) stations located along the Red River of the North, namely Grand Forks and Drayton, are used for the calibrations and validations of the Muskingum model. To enhance the accuracy of the procedure, a reach is divided into multiple sub-reaches, and the Muskingum model calculations are performed individually for each interval using the distributed Muskingum method. Notably, the model development process incorporates the use of the Salp Swarm algorithm. The obtained results demonstrate the effectiveness of the developed nonlinear Muskingum model in accurately routing floods through the very gentle river with a bed slope of (0.0002–0.0003). The events were categorized into three groups based on their dominant drivers: Group A (Snowmelt-driven floods), Group B (Rain-on-snow-induced floods), and Group C (Mixed floods influenced by both snowmelt and rainfall). For the sub-reaches in Group A, single sub-reach (NR = 1), the Performance Evaluation Criteria (PEC) yielded the highest value for SSE, amounting to 404.9 × 106. In Group B, when NR = 2, PEC results the highest value were SSE = 730.2 × 106. The number of sub-reaches in a model has a significant influence on parameter estimates and model performance, as demonstrated by the analysis of hydrologic parameters and performance evaluation criteria. Optimal performance varied across case studies, emphasizing the importance of selecting the appropriate number of sub-reaches for peak discharge predictions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3