Propagation of THz radiation in air over a broad range of atmospheric temperature and humidity conditions

Author:

Taleb Fatima,Alfaro-Gomez Mariana,Al-Dabbagh Mohanad Dawood,Ornik Jan,Viana Juan,Jäckel Alexander,Mach Cornelius,Helminiak Jan,Kleine-Ostman Thomas,Kürner Thomas,Koch Martin,Mittleman Daniel M.,Castro-Camus EnriqueORCID

Abstract

AbstractAs the need for higher data rates for communication increases, the terahertz (THz) band has drawn considerable attention. This spectral region promises a much wider bandwidth and the transmission of large amounts of data at high speeds. However, there are still challenges that need to be addressed before the THz telecommunications technology hits the consumer market. One of the recurring concerns is that THz radiation is greatly absorbed by atmospheric water-vapor. Although many studies have presented the attenuation of THz signals under different atmospheric conditions, these results analyze specific temperature or humidity values, leaving the need for a more comprehensive analysis over a wider range of climate conditions. In this work, we present the first study of the attenuation of THz radiation over a broad range of temperatures and humidity values. It is worth noticing that all of our measurements have been undertaken at atmospheric pressure unlike many previous studies where the pressure was not kept constant for various temperatures. Furthermore, we extend our analysis beyond the impact of absolute humidity on the bit error rate in THz communications. We also discuss the refractivity of the atmosphere, examining its variations across different temperatures and humidity levels. THz propagation is studied using two different measurement systems, a long-path THz time-domain spectrometer as well as a quasi-optic setup with vector network analyze. We also compare the results with the ITU-R P.676-13 propagation model. We conclude that the attenuation at the absorption peaks increases linearly with water content and has no dependence on the temperature, while the refractive index, away from absorption lines, namely at 300 GHz shows a sub-linear increase with humidity.

Funder

Alexander von Humboldt-Stiftung

Consejo Nacional de Ciencia y Tecnolog ía

Deutsche Forschungsgemeinschaft

Philipps-Universität Marburg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3