Spatial attention-based residual network for human burn identification and classification

Author:

Yadav D. P.,Aljrees Turki,Kumar Deepak,Kumar Ankit,Singh Kamred Udham,Singh Teekam

Abstract

AbstractDiagnosing burns in humans has become critical, as early identification can save lives. The manual process of burn diagnosis is time-consuming and complex, even for experienced doctors. Machine learning (ML) and deep convolutional neural network (CNN) models have emerged as the standard for medical image diagnosis. The ML-based approach typically requires handcrafted features for training, which may result in suboptimal performance. Conversely, DL-based methods automatically extract features, but designing a robust model is challenging. Additionally, shallow DL methods lack long-range feature dependency, decreasing efficiency in various applications. We implemented several deep CNN models, ResNeXt, VGG16, and AlexNet, for human burn diagnosis. The results obtained from these models were found to be less reliable since shallow deep CNN models need improved attention modules to preserve the feature dependencies. Therefore, in the proposed study, the feature map is divided into several categories, and the channel dependencies between any two channel mappings within a given class are highlighted. A spatial attention map is built by considering the links between features and their locations. Our attention-based model BuRnGANeXt50 kernel and convolutional layers are also optimized for human burn diagnosis. The earlier study classified the burn based on depth of graft and non-graft. We first classified the burn based on the degree. Subsequently, it is classified into graft and non-graft. Furthermore, the proposed model performance is evaluated on Burns_BIP_US_database. The sensitivity of the BuRnGANeXt50 is 97.22% and 99.14%, respectively, for classifying burns based on degree and depth. This model may be used for quick screening of burn patients and can be executed in the cloud or on a local machine. The code of the proposed method can be accessed at https://github.com/dhirujis02/Journal.git for the sake of reproducibility.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Swine Burn Model for Investigating the Healing Process in Multiple Depth Burn Wounds;Journal of Visualized Experiments;2024-02-23

2. Review of machine learning for optical imaging of burn wound severity assessment;Journal of Biomedical Optics;2024-02-15

3. CViTS-Net: A CNN-ViT Network With Skip Connections for Histopathology Image Classification;IEEE Access;2024

4. Liver Tumour Parameter Prediction Using Feature Extraction and Supervised Function;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

5. Dense Mesh RCNN: assessment of human skin burn and burn depth severity;The Journal of Supercomputing;2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3