Structural damage detection using deep learning and FE model updating techniques

Author:

Lee Yunwoo,Kim Heesoo,Min Seongi,Yoon Hyungchul

Abstract

AbstractThe structural condition can be estimated by various methods. Damage detection, as one of those methods, deals with identifying changes in specific features within structural behavior based on numerical models. Since the method is based on simulation for various damage conditions, there are limitations in applicability due to inevitable discrepancies between the analytical model and the actual structure. Finite element model updating is a technique for establishing a finite element model that can reflect the current state of a target structure based on the measured responses. It is performed based on optimization for various structural parameters, but the final output can converge differently depending on the initial model and the characteristics of the algorithm. Although the updated model may not faithfully replicate the target structure as it is, it can be considered equivalent in terms of the relationship between the structural properties and behavioral characteristics of the target. This allows for the analysis of changes in the mechanical relationships established for the target structure. The change can be related to structural damage, and artificial intelligence technology can provide an alternative solution in such complex problems where analytical approaches are challenging. Taking practical aspects from the aforementioned methods, a novel structural damage detection methodology is presented in this study for identifying the location and extent of the damage. Model updating is used to establish a reference model that reflects the structural characteristics of the target. Training data for various damage conditions based on the reference model allows the artificial intelligence networks to identify damage to the target structure.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3