Study of banana preservation extension by UVC radiation in precise monitoring LED irradiation cavity

Author:

Le Thi-Thu-Ngoc,Liao Chung-Ta,Lin Shih-Kang,Wu Chi-Shou,Nguyen Quang-Khoi,Yang Tsung-Hsun,Yu Yeh-Wei,Sun Ching-Cherng

Abstract

AbstractUltraviolet C (UVC) radiation has been considered a possible option to alleviate the seriousness of black spots on bananas during preservation which help increase economic efficiency. In this study, using 275 nm UVC light-emitting diodes (LEDs), a preliminary cavity with dimensions of 30 × 30 × 30 cm was designed and fabricated to aid in reducing black spots on bananas with the aim of application in the factory conveyor belts. The UVC irradiance distribution was thoroughly monitored for many sections at different box heights in both simulation and measurement, with a dominant range of 6–9 W/m2 in the middle. Afterward, trials were conducted in vitro and in vivo at different selected UVC doses. The results in vitro revealed that a dose of over 0.36 kJ/m2 has an excellent effect on inhibiting the colonial germination of fungal Colletotrichum musae, a common species of fungi causing black spot disease on bananas. In vivo conditions, with a short exposure time of around 5 s, the black spots on UVC-irradiated banana peel significantly reduced with minimal sensory damage compared to a control banana via observation after seven days from treatment. Finally, the optimal UVC dose is proposed from 0.030 to 0.045 kJ/m2 for the one-time treatment when considering the upper surface of the banana. With flexibility advantage and short exposure time, the fabricated cavity (box) promises to bring a lot of application potential to aid banana preservation in factories and households.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3