Chemistry beyond the Hartree–Fock energy via quantum computed moments

Author:

Jones Michael A.,Vallury Harish J.,Hill Charles D.,Hollenberg Lloyd C. L.

Abstract

AbstractQuantum computers hold promise to circumvent the limitations of conventional computing for difficult molecular problems. However, the accumulation of quantum logic errors on real devices represents a major challenge, particularly in the pursuit of chemical accuracy requiring the inclusion of electronic correlation effects. In this work we implement the quantum computed moments (QCM) approach for hydrogen chain molecular systems up to H$$_6$$ 6 . On a superconducting quantum processor, Hamiltonian moments, $$\langle H^p\rangle$$ H p are computed with respect to the Hartree–Fock state, which are then employed in Lanczos expansion theory to determine an estimate for the ground-state energy which incorporates electronic correlations and manifestly improves on the direct energy measurement. Post-processing purification of the raw QCM data takes the estimate below the Hartree–Fock energy to within 99.9% of the exact electronic ground-state energy for the largest system studied, H$$_6$$ 6 . Calculated dissociation curves indicate precision at about 10mH for this system and as low as 0.1mH for molecular hydrogen, H$$_2$$ 2 , over a range of bond lengths. In the context of stringent precision requirements for chemical problems, these results provide strong evidence for the error suppression capability of the QCM method, particularly when coupled with post-processing error mitigation. While calculations based on the Hartree–Fock state are tractable to classical computation, these results represent a first step towards implementing the QCM method in a quantum chemical trial circuit. Greater emphasis on more efficient representations of the Hamiltonian and classical preprocessing steps may enable the solution of larger systems on near-term quantum processors.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3